A National Oceanographic Partnership Program Award

Establishing a NOAA Operational Data Center for Surface Currents Derived from Satellite Altimeters and Scatterometers; Pilot Study for the Tropical Pacific Including the Hawaiian Islands and US Territorial Islands.

Dr. Gary S. E. Lagerloef
Earth and Space Research, 1910 Fairview Ave E
Seattle WA 98102-3620 USA
Phone: (206) 726-0501 FAX: 206-726-0524 E-mail: lager@esr.org

Gary T. Mitchum
College of Marine Science, University of South Florida
140 Seventh Ave. South, St. Petersburg, FL 33701
Phone: (727) 553-3941 FAX: (727) 553-1189 E-mail: mitchum@marine.usf.edu

Robert Cheney
Chief, NOAA Laboratory for Satellite Altimetry
1315 East-West Highway, Silver Spring, MD 20910
Phone: (301) 713-2857 ext. 118 FAX: (301) 713-4598 E-mail: Robert.Cheney@noaa.gov

Mark Bourassa
Center for Ocean Atmospheric Prediction Studies
Florida State University, Tallahassee, FL 32306-2840
Phone: (850) 644-6923 FAX: (850) 644-5092 E-mail: bourassa@coaps.fsu.edu

Jeffrey Polovina
Chief, Ecosystem & Environment Investigation
Honolulu Laboratory, NOAA, 2570 Dole St. Honolulu, HI 96822-2396
Phone: (808) 983-5390 FAX: (808) 983-2900 E-mail: Jeffrey.Polovina@Noaa.Gov

Richard Legeckis
NOAA Laboratory for Satellite Altimetry
1315 East-West Highway, Silver Spring, MD 20910
Phone: (301) 713-2857 ext. 118 FAX: (301) 713-4598 E-mail: Richard.Legeckis@noaa.gov

Gregg Jacobs
NRL Code 7323, Stennis Space Center, MS 39529
Phone: (228) 688-4720 FAX: (228) 688-4759 E-mail: jacobs@nrlssc.navy.mil

Award Number: (DG133E-02-CN-0075)
http://www.oscar.noaa.gov

Long-term goals
This project, which now has a working name OSCAR (Ocean Surface Currents Analysis Real-time), develops a processing system and data center to provide operational ocean surface velocity fields from satellite altimeter and vector wind data. The regional focus is the tropical Pacific, where the value of this data is demonstrated for a variety of uses, specifically fisheries
management and recruitment, monitoring debris drift, larvae drift, oil spills, fronts and eddies, as well as large scale climate diagnostics and prediction. The end product will be to leave in place a turnkey system running at NOAA/NESDIS, with an established user clientele and easy internet data access.

Objectives

The method to derive surface currents with satellite altimeter and scatterometer data is the outcome of several years of NASA-sponsored research. This project transitions the capability to operational oceanographic applications. The near term objective is to provide data that is updated on a weekly basis, and to carry out a thorough validation analysis. The data have been very useful to monitoring the El Nino in 2002.

Approach and work plan

Gary Mitchum acquires Jason-1 altimeter Interim Geophysical Data Records (IGDRs) from NASA on a regular basis and every week the gridded sea surface height analysis is updated.
Mark Bourassa provides routine gridded analyses of scatterometer vector wind data. Once per week, these files are transferred to the PI’s institution (ESR) where the data are converted into surface currents using the dynamical model of Bonjean and Lagerloef (2002). The surface current fields are then automatically sent to NOAA/PMEL where the OSCAR website (www.oscar.noaa.gov) is being developed. Figure 1 shows the latest image from the web page. Work in the coming year will include streamlining the automated processing system, documentation, extensive validation analyses using surface drifters and ocean current measurements, and scientific evaluations of the ocean dynamics.

Work Completed

- Monthly surface current maps were furnished to the NOAA Climate Diagnostics Bulletin.
- The OSCAR website was activated in September 2002, allowing public access.
- The website is continually modified to improve data display options.
- The paper presenting the dynamical model was published in J. Physical Oceanography.

Results

The evolution of the 2002 El Nino was watched closely with the real time surface current data. Strong eastward anomalous flow occurred along the equator from June through November, and was followed by rapid sea surface temperature (SST) growth as the El Nino developed. Our analyses indicate that the surface currents peaked in October, the SST peaked in late November, and the warm event is now in decline (Lagerloef et al., 2003).

Impact and Applications

National Security
The surface current data may become important for naval, commercial maritime or search and rescue operations.

Economic Development
To the extent that the data from this project improves El Nino prediction, there are potential societal benefits for forecasting economic and environmental impacts.

Quality of Life
These data are being applied to Pacific fisheries resource management.

Science Education and Communication
The OSCAR website is open to the public and available students and educators. The PI is working with NASA to help develop high school science curricula concerning ocean currents.

Transitions
None except as noted above.
Related projects
The PI and CoI Gary Mitchum collaborate on a NASA-funded program for scientific analysis of Jason altimeter data. This long term project supported the initial development of the surface current analysis, and is scheduled to continue one more year with low-level funding.

Publications

