A National Oceanographic Partnership Program Award

“Renewal of SABSOON”

James R. Nelson
Skidaway Institute of Oceanography
10 Ocean Science Circle
Savannah, Georgia 31411
phone: (912) 598-2473 fax: (912) 598-2310 email: nelson@skio.peachnet.edu

Award Number: N000140210060

Long-Term Goals

The South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) is a real-time coastal ocean observing system on the continental shelf off Georgia. SABSOON utilizes the existing infrastructure of offshore towers maintained by the U.S. Navy as part of a flight training range. The long-term objective for SABSOON is to function both as component of a regional coastal ocean observing system, and as a coastal ocean observatory. It is intended that SABSOON will provide distributed real-time observations and time series records of coastal ocean conditions, and as well as facility that can host specific projects and serve as a test bed for development of new sensor systems.

Objectives

This one-year renewal of SABSOON was funded under the NOPP FY01 BAA (Topic Area “Renewal of Existing NOPP Projects”). The renewal has supported maintenance of the system, further development and deployment of instrument packages, and is contributing to continued collaboration with an associated modeling program (separately funded by NOPP, Dan Lynch of Dartmouth College, Lead P.I.). The renewal has also provided support for key technical support personnel during a transition period from an independent project to an integrated component of developing regional and national coastal ocean observing systems (see Transitions, below).

Approach

Through partnership with the Naval Surface Warfare Center (NAVSEA, Corona CA), and its regional component, the Tactical Aircrew Training System (TACTS, based at the Marine Corps Air Station, Beaufort, SC), offshore platforms have been equipped with meteorological and oceanographic sensors and real-time, two-way communications have been established for SABSOON (Seim, 2000). The eight towers maintained by TACTS are located about 50-100 km offshore, at 25-45 m water depth. As a no-cost partner in the original NOPP project (initiated in FY98), TACTS has actively supported the development of SABSOON. In addition to logistic support (shared helicopter transportation and technical advice), TACTS has provided SABSOON with power and access to its high bandwidth microwave communications network on three central “master” (4-legged) platforms (Fig. 1). The Navy power and communications systems on the five smaller “remote” (3-legged) platforms are more limited. It was decided that installation of separate power and communications at the remote platforms was necessary to support the SABSOON observatory operations and to ensure that there would be no interference with the Navy systems. The basic approach for design of SABSOON systems has been to emphasize real-time data acquisition, flexibility for future additions or modifications of instrument...
packages, and, where possible, to make instrument packages serviceable from the platform (minimizing the need for weather-dependent ship and diving operations).

Figure 1. The M2R6 platform. This “master” platform is located in 33 m water depth about 60 km offshore. Power on the master platform is generated on site by photovoltaic panels, wind generators and a diesel backup generator. A high-bandwidth microwave network is used for communications between master platforms and shore. Helicopter transportation of personnel is used for most servicing operations.

Work Completed
SABSOON systems are operational at two of the three master towers (R2, M2). The battery and solar photovoltaic panels for a power system separate from the Navy have been installed at the NE remote platform (R8), and antennas for a SABSOON microwave link between R8 and M2
have been installed. The next steps will be to complete the communications and power systems installations (the latter will include a wind generator, propane backup generator and power monitoring/control system). Some challenges in the past year have delayed planned system development (particularly at the R8 platform), and, at times, compromised data acquisition. In the late summer and early fall of 2001, problems with the Navy power systems interrupted real-time communications and data acquisition at the R2 platform. From spring until early summer of 2002, helicopter service was not available and SABSOON maintenance and installation operations were limited. Helicopter service (contracted to a private company) was reestablished in the summer. Although causing some gaps in data acquisition, SABSOON will benefit from the ongoing maintenance and upgrade of the Navy systems by TACTS. The Navy installed new banks of batteries at R2 in September 2001 and the Navy’s microwave communications system is presently being upgraded.

Additional SABSOON system enhancements have been implemented during the past year. A new ADCP was installed at the R2 tower (bottom-deployed frame about 200 m from the tower), with data acquisition beginning in late June 2002. Automated data processing scripts are being updated and a GUI tool for data QC (with logging of outlier removal, etc.) has been implemented for CTD and ACDP data records. Divers from Skidaway (SABSOON project technicians) and from the Gray’s Reef National Marine Sanctuary program (a SABSOON partner) also replaced the camera and cable for the UW fish video system designed by project partner Charlie Barans of South Carolina DNR.

Results

Analyses of SABSOON data records are ongoing. For example, ADCP current records from the M2 tower (~33 m depth) have been analyzed by Harvey Seim and graduate students at UNC, with a harmonic analysis was carried out on each of 13 months. Subsequent study focused on variability in the largest semi-diurnal constituent. Stratification was found to cause significant shifts in vertical shear, ellipticity, tidal phase and ellipse orientation. Estimates of bed stress also vary in time and suggest that surface gravity waves are modulating the properties of the benthic boundary layer and impacting tidal current speed. A linearized one-dimensional momentum balance was used to estimate the eddy viscosity necessary to explain the vertical current structure. Vertical structure of the eddy viscosity was also found to vary with stratification with maximum values ranging from 0.01 to 0.05 m2/s. Comparison of the observations during unstratified conditions with a one-dimensional model that includes a turbulence closure scheme confirms observational estimates of a roughness length of 2-10 cm, consistent with a strong influence of the surface gravity wave field on the benthic boundary layer.

The impact of surface wave forcing on the optical properties of the water column and potential biogeochemical exchange processes on the shelf are also indicated from SABSOON observations. A distinct increase in chlorophyll fluorescence (and in beam attenuation at M2) has been noted when large surface waves are generated in storms (Fig. 2). This is likely due to the suspension of benthic diatoms that are very abundant in the surface sediments of the SAB mid-to-outer shelf, (Nelson et al. 1999) and other fine particles. Comparison of pre- and post-storm SeaWiFS ocean color imagery showed that regional bio-optical properties can be strongly impacted by such storm events.
A National Oceanographic Partnership Program Award

Impact and Applications

National Security
The key partner in the NOPP project that has lead to the development of the South Atlantic Bight Synoptic Offshore Observational Network (SABSOON) is the U.S. Navy, specifically the SE Tactical Aircrew Combat Training Center (SE TACTS, a unit of the Naval Surface Warfare Center) operated from the Marine Air Station, Beaufort, South Carolina. TACTS has provided SklO personnel with access to offshore platforms that are part of the flight training facility, and allowed SABSOON to tie in with Navy power and communications systems. Utilizing this infrastructure base, SABSOON is now providing real-time meteorological data, wave information and observations of surface and sub-surface ocean conditions, including currents. While a direct link to National Security and Homeland Defense was not the primary motivation for development of SABSOON, the offshore observations are available for Navy applications.

Economic Development
One of the objectives of the SABSOON program was to develop the support base that will allow the system to serve as an offshore test-bed for marine sensor, power, and communications systems technologies. SABSOON data acquisition and communications systems have been designed with this objective in mind. Although not yet realized, several potential deployments for field tests of new instruments have been discussed, including AUV systems, an in-water pCO2 sensor and a marine aerosol/particulate collector/analyzer.

Quality of Life
Based on feedback from email and telephone inquiries, SABSOON wind speed/direction and wave height information accessed from the web (http://www.skio.peachnet.edu/projects/m2/currentM2.html) are regularly used by offshore boaters and sportfishermen. Meteorological and surface ocean observations are transmitted hourly to the National Weather Service (in an NDBC-defined format) and utilized in marine forecasting models by NWS personnel at both the Charleston, SC and Jacksonville, FL forecasting offices. As for most coastal areas, the number of sites providing real-time observations to the NWS is presently limited, and the SABSOON observations (intended to be further extended to additional towers) help provide observations in a data-sparse section of the SE U.S. coastal ocean.

SABSOON has also supported the development of an underwater video system (through partnership with the SC Department of Natural Resources) that images a set of artificial reef structures deployed on the sea floor near one of the towers. This component of the project is evaluating the application of the video imagery for fisheries management of shelf reef fishes, particularly scamp and gag grouper (presently heavily exploited by commercial and recreational fishing), by providing time series of visual data concerning populations, transient predators, and behavior of individual fish.

Science Education and Communication

Hourly updated SABSOON observations are available to the public on the project website (noted above). A separate project of Dr. Jim Demmers of the Georgia Institute of Technology Research Institute (recently funded by NSF) is developing a web-based virtual learning environment for K-12 students. A workshop with secondary school teachers to initiate training and feedback for this system has been set up for spring, 2003 at Skidaway.

Transitions

National Security

As part of a larger project, the Southeast Atlantic Coastal Ocean Observing System (SEA-COOS) that will continue development of SABSOON systems, it is planned to evaluate a new battery technology (lithium solid polymer) that the SE TACTS (U.S. Navy) is considering for offshore applications. Although more expensive than conventional lead-acid batteries, the LSP batteries may offer a number of advantages for powering the offshore Navy and SABSOON systems that offset the higher battery cost (reducing transportation costs, facilitating installation). Skidaway Institute engineering personnel will implement this trial in 2003. Also, although at a very preliminary stage at this point, SABSOON personnel have had discussions with the Navy partner concerning deployment additional sensor systems (e.g., visibility, fog) that would directly benefit Navy surface fleet training operations that may be sited in the tower range area.

Quality of Life

The further development of SABSOON planned as part of the SEA-COOS will expand the coastal ocean observations available to the NWS, state agencies, and the public (described above), as well as enhance the capabilities of the network to serve as a coastal ocean research observatory.

Science Education and Communication
A National Oceanographic Partnership Program Award

Additional links to science education and public outreach are being developed through the SEA-COOS project. The regional Sea Grant programs are coordinating the outreach component of SEA-COOS. Other potential educational links have been pursued, including links to two regional components of the NSF-sponsored COSEE program (Centers for Ocean Science Education Excellence).

Related Projects

In addition to the NOPP modeling program described above, SABSOON data is being utilized to complement separate research projects on benthic biogeochemical processes on the shelf (NSF projects of Rick Jahnke), benthic primary production (NSF, Nelson), and application of ocean color imagery in studies of lateral biogeochemical exchange processes on the shelf (NASA, Nelson, Jahnke, Li). The development of an UW video system for fisheries studies, initiated in partnership with Charlie Barans (SC DNR) will continue under SEA-COOS. Further development of instrument/sensor test bed capabilities are being pursued in association with the Alliance for Coastal Technologies (ACT, http://www.actonline.ws/). We are also interacting with an NSF/SURA funded project (“Cast-Net”, http://www.cast-net.org/) that is working to facilitate exchange of data from various SE marine labs and monitoring programs. Improved FGDC compliant metadata records for SABSOON are being implemented through a web-based form developed by Cast-Net and a web-based system for instrument service and calibration records is being developed. An outreach/education effort was recently initiated through collaboration with Dr. Jim Demmers of the Georgia Tech Research Institute. Demmers has received an award from NSF to develop web-based, interactive educational units for K-12 students using the real-time and archived SABSOON data. We intend to link this effort with the Marine Educator programs of the University of Georgia’s Marine Education Center and Aquarium (located next to the Skidaway Institute) and further develop this outreach tool as part of the SEA-COOS program.

References
